μ' en μ'' bepaling met de nanoVNA.

Herman van Rees, PAOVRE

Nano vna + S11 output + Excel geeft µ' en µ''

De meetkamer gemaakt door Henk PAOHKZ

Of het nou een grote ring....

Of een kleine ring betreft..

Wat moet je doen?

- Start en stopfrequentie instellen en Kalibratie uitvoeren met NanoVNA-Sharp of –Saver.
- Kalibratie: open, short=meetkamer, load=50 Ω
- Ringkern plaatsen en S11 meten.
- S11 data exporteren in <filenaam>.S1P file met nanovna-Sharp of -Saver.
- S1P file importeren in Excel rekenblad.
- Maten ringkern invoeren en μ', μ'' zijn bekend
 -> mission completed!

Wat zit er onder de motorkap?

Excel rekenblad

2	A	В	С	D	E	F	G	Н		J	K	L	M	N	0
1	A	0,000246		50016	0,99394	178,7596962		-0,99370289	0,021514456		0,001753296	3,87E-04	0,00623919	226,40	805,6
2	l=	0,1450		549515	0,96406	171,1954042		-0,95269936	0,147563928		0,010235379	4,10E-03	0,04279354	124,70	521,4
3	u_0	1,26E-06		1049015	0,94393	164,5562684		-0,90984886	0,251361451		0,015803908	7,58E-03	0,07289482	104,24	480,8
4				1548515	0,92553	158,1655814		-0,85913538	0,344228466		0,020792008	1,08E-02	0,09982626	96,43	463,0
5	export van nanovna sharp			2048015	0,90557	151,9043068		-0,79886018	0,42647447		0,026091581	1,36E-02	0,1236776	95,70	453,6
6	S1P file in formaat MAG + ANG			2547515	0,88439	145,7375456		-0,73091828	0,497897134		0,031589253	1,61E-02	0,14439017	98,14	448,6
7	formaat magnitude en hoek			3047015	0,86016	139,7922286		-0,65691231	0,555286718		0,037717816	1,81E-02	0,16103315	104,07	444,3
8	hoek is in graden!!! Exel in rad			3546515	0,83306	134,0955582		-0,57968973	0,598286223		0,044371945	1,97E-02	0,173503	112,58	440,2
9	verklaring kolommen			4046014	0,80343	128,7845529		-0,50326358	0,626279363		0,05140249	2,09E-02	0,18162102	122,99	434,6
10	D=freq			4545514	0,77331	123,9101802		-0,43142589	0,641783126		0,058287988	2,18E-02	0,18611711	133,78	427,2
11	E=MAG			5045014	0,74411	119,4366411		-0,36570008	0,648043758		0,064713897	2,25E-02	0,18793269	144,12	418,5
12	F=ANG			5544514	0,71675	115,3846382		-0,30726515	0,647546952		0,070509305	2,30E-02	0,18778862	153,41	408,6
13	H=a			6044014	0,69187	111,7185792		-0,25602512	0,642755989		0,075590802	2,34E-02	0,18639924	161,30	397,7
14	i=b			6543513	0,66967	108,3837797		-0,21120087	0,635493877		0,07997355	2,38E-02	0,18429322	167,72	386,5
15				7043014	0,64918	105,2657868		-0,17092586	0,626268806		0,083892901	2,42E-02	0,18161795	173,44	375,5
16	K=teller μ'			7542514	0,63127	102,4292315		-0,13587	0,616472425		0,087217658	2,45E-02	0,178777	177,75	364,3
17	L=noemer			8042013	0,61526	99,78430615		-0,10455757	0,606313945		0,090110412	2,49E-02	0,17583104	181,20	353,6
18	M=teller µ"			8541513	0,60166	97,28959805		-0,07634114	0,5967955		0,092511039	2,52E-02	0,17307069	183,58	343,5
19	N=μ"			9041013	0,58908	94,9489865		-0,05081876	0,586878955		0,094683629	2,55E-02	0,1701949	185,61	333,6
20	Ο=μ'			9540513	0,57799	92,76572322		-0,02788948	0,577320516		0,096558864	2,58E-02	0,16742295	186,96	324,2
21				10040013	0,56812	90,66283975		-0,00657232	0,568085551		0,098199164	2,61E-02	0,16474481	187,97	315,4
22	kolom h: a=mag*cos(ang)			10539512	0,55878	88,65967376		0,013070479	0,558629869		0,099725466	2,64E-02	0,16200266	188,89	306,8
23	kolom i:b=mag*sin(ang)			11039013	0,55109	86,84326613		0,030347242	0,55025506		0,10096327	2,67E-02	0,15957397	188,91	298,6
24				11530513	0 54004	05.05435063		0.040004011	0.541015357		0.1001114400	3 705 03	0.15310053	100.00	200.0

<u>Theorie</u>

De impedantie als functie van de frequentie van een spoel is gegeven door :

- Z= r + J2. π .f.L en L is gegeven door: L=n². μ_0 . μ'_r .A/l
- n=aantal windingen, hier meetkamer = 1
- μ_0 =1,26.10⁻⁶
- A doorsnede ringkern in m²
- I = gemiddelde lengte ringkern in m

In Z= J2. π .f.L met L=n². μ_0 . μ_r .A/l is μ_r de enige onbekende dus:

$$\frac{Z * l}{n^2 * \mu_0 * A * 2 * \pi * f} = \mu_r$$

Let op: $\mu_r = \mu'_r - j \mu''_r !!$

Samenvattend:

- μ_r is reëel voor verliesvrij kernmateriaal
- μ_r is complex wanneer sprake is van verliezen.
- ideale spoel: $Z = j\omega L$.
- Met verliezen: $Z=(r + j\omega L)$
- In de praktijk altijd verliezen, -> complexe μ_r en Z van toepassing.

De s1p file opbouw

- Z (a + jb) is in S11 formaat gegeven in de *.S1P file.
- Het S11 formaat heet "Touchstone" formaat.
- Touchstone is een file formaat specificatie waarmee de SnP files beschreven worden. Zie <u>https://groups.io/g/rfseminar/files</u>
 Daar heb ik een concept standaard geüpload ter inzage.
- ook voorbeeldfiles van S1P files

 De relatie tussen S11 (touchstone formaat) en Z (a+jb) wordt gegeven door:

$$Z = 50 * \frac{1 + S11}{1 - S11}$$

De uitwerking van die complexe deling is in de bijlage gegeven. Dat levert Z op.

Met het reëele deel a en het complexe deel jb van Z kan vervolgens μ'' en μ' berekend worden.

 De functie S2Z(S11) in de DG8SAQ software zet de S11 parameter automatisch om in een reëel en imaginair deel van Z.

Die luxe hebben wij met de nanoVNA niet, vandaar het complexe rekenwerk.

Nog wat valkuilen:

- Sharp exporteert in magnitude en graden
- Excel rekent in radialen
- Saver exporteert in R + Jx
- S1p file met decimaalpunt, Excel met komma Gevolg:
- Aparte Excel voor sharp
- Aparte Excel voor saver

Een grafiek maken?

- De kolommen frequentie, μ' en μ'' uit Excel plotten.
- Suggestie: MagicPlotStudent ¹⁾
- Geen plot: -> uitlezen uit Excel per frequentie.
- frequentie = kolom D; μ'' = kolom N;
 μ'=kolom O

resultaat met plotprogramma

webinair 14-06-2020 PAOVRE

Conversite Terrebrittene formant -> at jb
Tonductione requil
Srequent's; magnihude; hade: Sharp
Ste o...1 (Social)
Ste o...1
Ste o...1
Ste o...1
Ste o...1
Ste o...1
Ste o...1
Deconner:
Z=O+Jd=Ze^{1+Su} = 1+atJb Terrebrittened
Deconner:
Z=O+Jd=Ze^{1+Su} = 1+atJb Terrebrittened
Deconner:
Z=O+Jd=Ze^{1+Su} = 1+atJb Terrebrittened
(1+atJb) (1-a)tJb)
=Z* ((1-a)tJb)((1-a)tJb)
=Z* ((1-a)tJb)((1-a)tJb)
=Z* ((1-a)tJb)((1-a)tJb)
=Z* (1-a^2+b^2+tJb)
ReZ=O = Zo
$$\times \frac{1-a^2-b^2}{1+2a+a^2+b^2}$$

Mar = So $\frac{(1-a^2-b^2)}{(1+2a+a^2+b^2)(2,7t,5, Mo, th, A}$ (3)
Mr = So $\frac{2.b.J}{(1+2a+a^2+b^2)(2,7t,5, Mo, th, A}$
Mar = So $\frac{2.b.J}{(1+2a+a^2+b^2)(2,7t,5, Mo, th, A}$

Dank voor uw aandacht.

Vragen?