NanoVNA

ein Vektorieller Network Analyzer für 50 kHz bis 900 MHz unter 50 Euro

"Getting Started Manual" in drei Teilen:

Teil 1: Das Gerät

Teil 2: Betrieb nur am PC mit der Software "NanoVNA - saver V0.2.0." (einschließlich Praxis-Beispielen)

Teil 3: Stand-Alone-Betrieb

Version 1.4.2.

Autor: Gunthard Kraus, DG8GB Tettnang, den 02. 12. 2019

Hinweis:

Die drei Teile des Manuals können getrennt voneinander benutzt werden

Wer sich für den **NanoVNA selbst** und sein Drumherum (Lieferumfang, Batteriebetrieb, Tasten usw.) interessiert, der lese **Teil 1**

Wer **nur am PC-Bildschirm** mit dem NanoVNA und der **NanoVNA-saver Software** arbeiten will, der steige sofort in **Teil 2**

ein.

Und wer ausschließlich mit dem **Gerät alleine im Batteriebetrieb** arbeiten möchte / muss (Beispiel: Messung im Aussendienst an einer Antenne), der braucht

Teil 3

als Anleitung

Und noch eine Hilfe: die **neueste Version v0.2.0. der NanoVNA-saver-Software** findet sich unter

https://github.com/mihtjel/nanovna-saver/releases

Inhaltsverzeichnis Teil 1: Das Gerät (mit Akku oder Netzteil)

Kapitel	Seite
1. Eine kurze Vorstellung	5
2. Was steckt dahinter?	6
3. Was brauchen wir / was sollen wir bestellen?	7
4. Informationen zur Stromversorgung des Gerätes (Akku-Betrieb oder externe Spannungsquelle)	8

Teil 2: Der NanoVNA am PC

5. Vorbemerkung (und Spickzettel)	9
6. Vorbereitung und Start	10
7. Start der nötigen Software	11
8. Display - Settings = nötige Einstellungen beim Bildschirm	12
9. Sweep Settings	13
10. Sweep - Programmierung für 50 kHz900 MHz	14
11. Start der Kalibrierung mit den Kalibrierdaten	15
12. Die SOLT-Kalibrierung	17
13. Kontrolle des Kalibrier - Erfolges	19
14. Praxistest an einem 110 MHz - Tiefpass	22
15. Das Passband: Grunddämpfung und Group Delay für unseren Tiefpass	23
16. Die Sache mit den Markern	25
17. Ein Bandpass für 10,7 MHz als zweites Praxisbeispiel 17.1. Die Analysis-Automatik 17.2. Set Sweep as Reference 17.3. Speichern der erzeugten Touchstone Files für S11 und S21	26 29 33 35

18. Drittes Beispiel: Ermittlung der Eigenschaften einer Filterspule	37
19. Viertes Beispiel: Ferritantenne für VLF-Experimente	39
20. Fünftes Beispiel: Ganzwellen-Loop - Antenne für das 70 cm - Amateurfunk-Band	41

Teil 3: Stand alone Betrieb

21. Bedienermenü für den NanoVNA	43
22. Direkte Bekanntschaft mit dem Gerät	44
23. Die erste erfolgreiche Messung: Eigenschaften der LOAD	45
24. Die Sweep - Möglichkeiten 24.1 Start -Stopp - Betrieb	46 46
24.2. Center / Span - Betrieb bei 465 MHz	46
24.3. CW – Betrieb bei 465 MHz	47
25. Die Kalibrierung	48
26. Die Sache mit den Mess-Kabeln	49
27. SOLT - Kalibrierung (50 kHz bis 900 MHz) für Platz C0	50
28. Erstes Beispiel: wieder der Tschebyschef - Tiefpass mit 7 fg = 110 MHz und N = 5	52
29. Eine Bilanz (= Gut / Schlecht / Änderungen)	53

Teil 1: Das Gerät (mit Akku oder Netzteil)

1. Eine kurze Vorstellung

In diesem Bild sehen wir das kleine Gerät mit den Abmessungen einer Zigarettenschachtel (54 mm x 86 mm x 12 mm) samt einem kleinen LCD-Touchscreen (2,8 Zoll - Diagonale). Es fehlt eine komplette Abschirmung und es ist nur ein Boden- und ein Deckblech

Oben in der Mitte ist eine

USB – Buchse vom Typ "C" angebracht. Damit ist es wegen der symmetrischen Konstruktion egal, wie herum das USB-Kabel eingesteckt wird. Über diesen USB-Anschluss können wir das Gerät mit +5V versorgen und die Daten zum PC senden. Die daneben angeordnete blaue LED dient als "**Battery LED**" und leuchtet, sobald eine Versorgungsspannung anliegt.

Rechts daneben folgt der **Ein / Aus – Schalter**, gefolgt von einer blauen "**System LED**". Sie blinkt bei bestimmten Ereignissen oder Zuständen und den Abschluss bildet ganz rechts der **Multi-Funktionsschalter** ("**Multi Function Switch MFS**"). Er hat eine Doppelfunktion:

Drücken wir nach dem Einschalten darauf, so rufen wir das Haupt-Bedienermenü auf.

Da der MFS außerdem eine **Wippe** darstellt, können wir z. B. beim Messergebnis einen **Marker** entlang der Frequenzachse in beiden Richtungen **verschieben**. So holt man sich eine bestimmte interessierende Frequenz auf den Schirm.

Die wichtigsten Eigenschaften:

Measurement frequency:	50KHz ~ 300MHz (50KHz -900MHz, extended firmware)
RF output:	-13dbm (maximum -9dbm)
Measurement range:	70dB (50kHz-300MHz), 60dB (300M-600MHz), 50dB (600M-900MHz)
Port SWR:	< 1.1
Display:	2.8 inch TFT (320 x240)

USB interface:	USB type-C communication mode: CDC (serial)
Power:	USB 5V 120mA
Number of scanning points:	101 (fixed)
Display Tracking:	4 Traces. Marking: 4, Setting Save: 5
Frequency error:	<0.5ppm

Wer sich den nebenstehenden Übersichtsschaltplan ansieht und sich etwas auskennt, ruft sofort:

....Aber, das ist ja der VNWA3 von Thomas Baier, DG8SAQ"!

Recht hat er bei der Elektronik und ihrem Konzept (z. B. dem Einsatz einer Messbrücke und der Mischung mit der Grundwelle eines DDS – Oszillators im Bereich von 50 kHz....300 MHz,

dann Oberwellenmischungen für 300 bis 600 MHz bzw. 600 bis 900 MHz). Darauf folgt die Auswertung im Audiobereich bei einigen kHz.

Ausgefeilt und sehr aufwendig ist dagegen die installierte Software und ihre Bedienung über Menüs mit Untermenüs und weiteren Untermenüs auf dem kleinen Bildschirm.

Eine genaue Übersicht des **Bedienermenüs** findet sich in **Teil 3 dieses Manuals**. Die sollte man sich genauer ansehen und einprägen, damit man weiß, wo und wie man etwas suchen muss....

3. Was brauchen wir / was sollen wir bestellen?

Wenn man in Ebay nach diesem Gerät sucht (Eingabe: z. B. "vectorial network analyzer" oder gleich "NanoVNA"), so erhält man unzählige Treffer, meist in der Gegend zwischen 35 und 60 Euro. **Da sollte man aber genau prüfen, was außer dem Gerät mitgeliefert wird, denn wir brauchen nämlich unbedingt**

a) zwei **kurze Koaxialkabel (meist: RG174) mit SMA – Steckern** (= male - male) an beiden Enden und

- b) ein USB-C-Verbindungskabel zum PC, sowie
- c) einen SOLT Kalibriersatz (SOLT = Short / Open / Load / Through). Der besteht aus vier Teilen:
 - Short= Idealer Kurzschluss im SMA Stecker (male)Open= Idealer Leerlauf in Form eines SMA Steckers (male), der im
Inneren scheinbar nur ein kleines offenes Röhrchen aufweistLoad= Idealer SMA Abschlusswiderstand (male) mit 50ΩThrough= SMA Kupplung mit Buchsen an beiden Enden (= SMA-
Female Female Adapter)

Zusätzliche Schirmung Es gibt auch Angebote, bei denen bereits ein kleiner, flacher Akku (Höhe: etwa 4 mm) mit +3,7 V / ca. 300...500 mAh dabei ist.

> (War bei mir nicht Fall, deshalb habe ich mir dieses Teil im Internet besorgt). Weitere Informationen zum Akkubetrieb gibt es im nächsten Kapitel 4.

(Quelle des Bildes: Blueskysea)

Sehr schön ist im Bild auch die sorgfältige zusätzliche Abschirmung der RF- Eingänge zu erkennen.

Wichtig:

Wir müssen ja später kalibrieren. Und wer da den letzten Rest an Genaugkeit herausholen möchte, der wird noch einen weiteren SMA - male - Abschlußwiderstand mit 50 Ω sowie einen weiteren SMA - Female - Female-Adapter benötigen. Muss man sich selbst im Internet beschaffen.

Auch lohnt es sich, zwei besonders hochwertige Teflon – SMA - Kabel mit ca. 30cm Länge zu besorgen (z. B. von Huber-Suhner). Die beiden im Kit mitgelieferten Exemplare sind leider nicht ganz so präzise.

4. Informationen zur Stromversorgung des Gerätes (Akku-Betrieb oder externe Spannungsquelle)

a) Die einfachste Möglichkeit ist die Versorgung vom PC aus über die **USB - Verbindung**. Das Board enthält entsprechende Regel- und Schutzschaltungen, damit bei +5V -Speisung und einem Bordnetz mit +3,7V nichts passieren kann. Eine blaue "**Battery LED**" zeigt an, ob die Versorgungsspannung korrekt anliegt, und beim Einschalten leuchtet zusätzlich eine blaue "**Status LED**".

b) Auf der Leiterplatte ist Platz für einen dieser modernen flachen Lithum – Polymer -Akkus und zwei Lötstellen auf der Leiterplatte sind mit "+ / - / Battery" markiert (...bei manchen Anbietern findet man dort eine hübsche kleine Steckverbindung samt dem bereits eingebauten Akku).

Die Dicke des Akkus sollte allerdings 4 mm nicht wesentlich überschreiten, sonst kriegt man die Bodenplatte nicht mehr drauf.

Ich habe mir so einen Akku im Internet bestellt und entdeckte im Batteriepack eine winzige schmale Leiterplatte.

Um ihre Funktion auszutesten, wurde folgende kleine Schaltung zusammengestellt:

USB-Anschluss) ein, dann sinkt der Strom entsprechend ab und nach 1...2 Stunden ist er bei Null angelangt (= Akku voll geladen).

Erste Erkenntnis:

Keine Gefahr der Überladung beim Auflöten des Akkus auf die Platine und USB-Speisung des NanoVNA mit +5 V.

Deshalb wurde nun der Akku auf das Board gelötet und der **NanoVNA ohne USB-Verbindung gestartet.** Es dauerte fast genau vier Stunden, bis der Touchscreen dunkel wurde und die Elektronik abschaltete. Bei einer Stromaufnahme von etwa 110 mA beträgt also die im Akku gespeicherte Energie etwa 440 mAh – das passt zum Aufdruck. Jetzt wurde die USB - Verbindung zum PC hergestellt und damit lädt sie den Akku sofort wieder auf. Das wurde nach einigen Stunden geprüft - stimmt!

Zweite Erkenntnis:

Ohne USB versorgt der Akku das Board (z. B. im Außenbereich bei der Messung an einer Antenne), mit USB und eingeschaltetem PC wird es korrekt versorgt und der Akku ebenso korrekt nachgeladen. Und für eine Laufzeit von mehreren Tagen kauft man sich zusätzlich eine "Power Bank", wie sie die Smartphone oder Handy - Benutzer längst besitzen.

Teil 2: Der NanoVNA am PC

5. Vorbemerkung (und Spickzettel!)

Wer dieses **Kapitel bereits vollständig durchgearbeitet hat**, der kann beim nächsten Mal hier nachsehen, wie die **korrekte Startprozedur** beim Arbeiten am Bildschirm auszusehen hat. Man übersieht da leicht etwas...

Programm starten /

NanoVNA über USB mit PC verbinden und einschalten /

USB-Verbindung herstellen /

Sweepbereich und Zahl der Segmente wählen /

Bei Bedarf "averaging sweep" einstellen und programmieren /

Calibration File laden /

Diagramme für die gewünschten Verläufe vorwählen /

Sweepen und warten /

Ergebnis anschauen.

6. Vorbereitung und Start

Leider können manchmal die im Kit mitgelieferten beiden SMA - Kabel Ärger machen.

Nicht nur ihr Wellenwiderstand stimmt nicht ganz (mit Time Domain Reflectometer gemessen: **irgendwo zwischen 52** Ω und 54 Ω statt 50 Ω), sondern es fiel bei mir einfach an einem Ende der SMA - Stecker ab, da die Crimpung des Steckers am Kabel schludrig ausgeführt war und wohl irgendwann die Lötverbindung zum Innenleiter abriss. Daher ergab die Kalibrierung oft sinnlose Werte, und bis man das findet....

Die rigorose Abhilfe besteht aus der Beschaffung und Verwendung von **zwei sehr** hochwertigen Kabeln (= Huber-Suhner mit blauschwarzem Mantel), die bis 18 GHz spezifiziert sind.

Sie verbleiben dauernd am NanoVNA und ihre SMA – Verbindung zum Board wird mit einem passenden SMA-Drehmoment - Schlüssel aus dem Internet kontrolliert.

(Unterlässt man die Kontrolle mit dem Drehmomentschlüssel bei allen SMA-Verbindungen, so kämpft man bei der Wiederholung der

Kalibrierung mit Abweichungen bis zu 0,4 dB bei S11)

Zur Beschaffung:

Auf und unter allen Tischen beim HAM – Radio - Flohmarkt genau schauen. Irgendwo liegen sie herum.

7. Start der nötigen Software

Wer nicht dauernd im Akkubetrieb irgendwo in der Landschaft messen muss, der wünscht sich sehr schnell eine übersichtlichere Ergebnis-Darstellung mit großen Diagrammen auf einem schönen PC-Bildschirm. Das wollen wir jetzt anpacken und gleichzeitig OM Andreas Zimmermann, DG3SAZ, für seine Hinweise und seine Unterstützung danken. Und natürlich Rune Broberg für die Erstellung und Pflege des Programms, sowie Kurt Poulsen als Kalibrierungs-Spezialisten.

Wir brauchen dazu nur noch den NanoVNA, das USB-C-Verbindungskabel sowie den PC mit dem nötigen Programm. Und am Board selbst nur den Ein-Aus-Schalter.

Es geht mit dem **Download einer erforderlichen kostenlosen Software** aus dem Internet los. (<u>https://github.com/mihtjel/nanovna-saver/releases</u>). Die hier verwendete heißt

NanoVNA – saver v0.2.0.exe

Sie lässt sich sogar problemlos auf einen USB-Stick kopieren und von dort aus betreiben. Nach dem Programmstart ist erst mal 10 Sekunden Wartezeit vor einem dunklen DOS-Bildschirm angesagt, dann erscheint dieses Bild.

weep control	Marker 1		S11 Smith Chart	S11 Return Loss (d8)
tart Center top Span egments Hz/step Sweep settings	Prequency: Impedance: Parallel R: Parallel X: L equiv.: C equiv.:	Return loss: VSWR: Q: S11Phase: S21Gain: S21Phase:		
0%	Marker 2			
Sweep Stop	Prequency: Impedance: Parallel R: Parallel X: L equiv.: C equiv.:	Return loss: VSWR: Q: S11 Phase: S21 Gain: S21 Phase:		
arker 3	Marker 3			
Hide data DR stimated cable length: Time Domain Reflectometry	Frequency: Impedance: Parallel R: Parallel X: Lequiv.:	Return loss: VSWR: Q: S11 Phase: S21 Gain:	521 Polar Plot	521 Gain (dt)
eference sweep Set current as reference	C equiv.: S11 Min VSWR: Return loss:	S21Phase:		
Reset reference	521 Min gain:			
erial port control erial port COM4 Rescan	Max gain:			
Connect to NanoVNA				
Files Calibration				
About				

Nun wird die USB-Verbindung zum PC hergestellt, der NanoVNA eingeschaltet, auf **"Connect to NanoVNA"** (= unten links) geklickt und (notfalls mit **Rescan**) dafür gesorgt, dass der dafür gültige USB-Port erkannt wird.

Wenn alles funktioniert, ändert sich diese Meldung in **"Disconnect"**.

8. Display-Settings – = nötige Einstellungen beim Bildschirm

Dieses Menü wird über eine Taste im linken unteren Eck des Bildschirms aufgerufen. Da sind am Anfang **vier Einstellungen** wichtig:

Here and the settings the settings the settings the setting se	- 🗆 X	
Options I Return loss is: ● Negative 1 ○ Positive ○ Show lines Displays a thin line between data points ○ Dark mode Black background with white text Sweep color ● Second sweep color ● Reference color ● Second reference color ● Point size 2 px ÷ Line thickness 2 px ÷ Marker size 10 px ÷ ○ Show marker numbers Displays the marker number next to the marker ○ Show markers Shows the marker as a filled triangle Data point is: ○ At the center of the marker ④ At the cip of the marker 4	Chart colors Use custom chart colors Chart background Chart foreground Chart text Font Font Font size Bands Show bands Chart bands Manage bands VSWR Markers VSWR Markers VSWR Markers	 Die Eingangs-Reflektion S11 soll in gewohnter Weise als negativer dB-Wert dargestellt werden. Die einzelnen Messpunkte sollen durch Linien miteinander verbunden werden UND der Diagramm-Hintergrund soll schwarz sein. (Kann man aber auf jede beliebige Farbe umstellen – auch bei den Kurven).
Displayed charts S11 Smith Chart S11 Return Loss None S21 Polar Plot S21 Gain None Markers Add Remove Settings	Add Remove	3: Punktgröße und Linienbreite sind auf 2 Pixel voreingestellt. Bitte bei Bedarf ändern.

4:

Wir können bis zu 6 Diagramme gleichzeitig auf den Schirm holen (Meist reichen uns vier).

Bei jedem einzelnen Diagramm kann man für die Ausgabe unter folgenden Verläufen wählen:

S11 Smithchart S11 Return Loss |S11| S11 |Z| S11 Phase S11 Group Delay S11 VSWR S11 R + jX S11 Quality Factor S11 Real / Imaginary S11 R/ω & X/ω S21 Polar Plot S21 Gain |S21| S21 Phase S21 Group Delay S21 Real / Imaginary S11 & S21 Log / Mag TDR None

Bitte diese Möglichkeiten im Menü bei Gelegenheit selbst untersuchen..

9. Sweep Settings

Wir beginnen mit einem Klick auf "**Sweep Settings**" in der linken oberen Hälfte des Bildschirms:

Here Sweep settings	_		\times	
Settings	 Single sweep Continuous s 	weep		Üblich ist ein einzelner Sweep (= " single sweep"). Aber den " Continuous Sweep" gibt es natürlich auch.
Number of measurements to average Number to discard Averaging allows discarding outlying sa Common values are 3/0, 5/2, 9/4 and	 Averaged sw 3 0 amples to get bett 25/6. 	eep ter avera <u>ç</u>	ges.	Im mittleren Rahmen wird es interessant. Da können wir nämlich eine Mittelwert- Bildung (= averaged sweep) aufrufen, um den Einfluss des Rauschens oder derAusreißer" (= Artefakte) zu
Sweep band Select band 2200 m Pad band limits None			~	vermindern. Das verbessert die Darstellungsqualität und man gibt die Zahl der Messwerte an, aus denen der Mittelwert berechnet wird.
 10% 25% 100% 				Und noch eine raffinierte Möglichkeit gibt es:
Sweep span: 135.7kHz to 137.8kHz Set band sw	veep			Solche Ausreißer können wir in der Zeile "Number to discard" auflisten und sie wegwerfen lassen. Wir müssen sie halt genau identifizieren

(= **Messwert-Nummer, gefolgt von der Segment-Nummer**) und die eingegebenen Werte durch ein **Komma trennen**).

Ein besonderes Bonbon enthält der violette Rahmen.

In ihm steht uns eine **Zusammenstellung aller Amateurfunk-Bänder** zur Verfügung, aus der wir eines durch einen Mausklick auswählen können. Sofort sind dann alle Sweep-Einstellungen fertig und wir können den Sweep-Bereich auf Wunsch noch eingrenzen. Bitte mal ausprobieren.

10. Sweep-Programmierung (Beispiel: für 50 kHz900 MHz

Die finden wir im linken oberen Eck des Bildschirms und dort erfolgt die Wahl des Frequenzbereichs sowie die Anzahl der Zahl der Segmente.

Den gesweepten **Frequenzbereich** legen wir durch die **Startfrequenz von 50 kHz und die Stoppfrequenz von 900 MHz** fest.

Die Eingabe der Werte ist in Zahlenform (z. B. 90000000), in Exponentialform (z. B. 900e6) oder in anderen Einheiten (kHz, MHz) möglich.

Bei den **Segmenten** finden wir eine ganz raffinierte Lösung:

Der NanoVNA selbst kann einen

eingestellten Bereich immer nur mit 101 Messpunkten untersuchen und ihn deshalb auch nur in 100 "frequency steps" aufteilen. Und die Sweep-Geschwindigkeit ist stets gleich, egal welchen Bereich wir wählen.

Bei der NanoVNA-saver-Software können wir dagegen die Zahl der Segmente erhöhen, in die der gesamte Sweepbereich aufgeteilt werden soll.

Wählen wir 20 Segmente, dann wird nochmals eine Unterteilung bei jedem einzelnen Segment in weitere 101 Messpunkte vorgenommen und so die Auflösung und Kalibrier - bzw. Messgenauigkeit beträchtlich gesteigert. Das dauert nun natürlich etwas länger, bis man das Ergebnis sieht und man verfolgt das am Besten beim grünen Fortschrittsbalken...

Wie man im violetten Rahmen sieht, haben wir nun mit 20 Segmenten einzelne Frequenzschritte ("Steps") mit einer Breite von 445.5 kHz.

11. Start der Kalibrierung mit den Kalibrier - Standards

Kurt Poulsen, der schon für den VNWA3 die Kalibrierdaten ermittelt und publiziert hatte, kümmerte sich auch um das Problem **"Kalibrierung des NanoVNA mit dem** mitgelieferten SOLT - Kalibriersatz". Nochmals Danke dafür!

Für unseren Fall (= fest aufgeschraubte Messkabel mit SMA - Steckern = male / male) gibt er folgende einzutragende Werte für die drei "SOL - Standards" an:

SHORT:	Delay = 51,16 ps
OPEN:	Delay = 51,13ps
LOAD:	R = 49,86 Ω, Delay = 61,59 ps
THROUGH:	Delay = 50,7 ps

Da alle **drei Standards beim Kauf eines NanoVNA als "male-Ausführung**" mitgeliefert werden, brauchen wir den ebenfalls vorhandenen **"Through" (= SMA - female – female) Adapter) zum SMA - Anschluß an das Messkabel (...das den Mess-Eingang bilden soll).** Der Adapter verursacht jedoch eine zusätzliche Signal-Laufzeit von **50,7 Picosekunden** und damit eine Phasenverschiebung bis zum gerade verwendeten Kalibrier-Teil.

Sehen wir uns das bei der **"OPEN"-**Kalibrierung an:

Durch den SMA - female – female -Adapter "Through" hat sich die gewünschte "Referenzebene" vom Stecker des Meßkabel-Einganges nach rechts bis zum Stecker des OPEN-Standards verschoben. Diese "Through"-Verzögerung von 50,7 ps (die ja eine Phasenverschiebung bewirkt) korrigiert die Software nun wieder automatisch zurück bis zur gewünschten Referenz-Ebene.

Das vollständige "Calibration Setting File" und seine Erstellung folgen auf der nächsten Seite.

Anmerkung:

Bei der "LOAD"-Kalibrierung sollten wir den Widerstandswert des verwendeten LOAD-Standards" auf 2 Nachkommastellen genau angeben. Nicht Jeder kann das, denn ein simples Digital-Multimeter reicht dazu nicht aus (korrekt kann man das nur mit einer speziellen 4 Punkt-Messmethode erledigen). Wer diese Möglichkeit nicht hat, der trägt einfach 50 Ω ein. Gibt nur einen kleinen Fehler.

(Ich selbst habe mir mit einem historischen Stück aus meinem Messgerätepark geholfen, nämlich einer alten, aber sehr genauen analogen Wheatstone-Messbrücke mit Zeigerinstrument. Sie lieferte bei meinem LOAD-Exemplar einen angenäherten Wert von $49,85 \Omega$).

Das ist die Liste der Calibration Standard Daten, die wir eingeben müssen:

12. Die SOLT-Kalibrierung

Links in der Mitte des geöffneten Kalibrier-Menüs finden wir diesen "Calibration assistent". Er führt uns sehr schön an der Hand durch die Prozedur der "SOL"-Kalibrierung für S11.

Natürlich muss jetzt auch der SOLT - Kalibriersatz bereit liegen.

Hier ein praktischer Tipp zur Aufbewahrung meines privat "erweiterten" SOLT - Vorrats:

Das leere Pillendöslein stammt als kleines Geschenk aus meiner Apotheke. Und in die drei entscheidenden Bauteile (= S0L) des Inhaltes habe ich nacheinander die Buchstaben "S", "O" und "L" mit der Reissnadel eingeritzt... Mit OK starten wir die Prozedur und folgen einfach den Anweisungen.

Bitte nicht die Geduld verlieren, wenn der Rechner länger werkelt. Einfach immer nur den grünen Fortschrittsbalken im Sweep - Feld beobachten!

Wir werden nach der "SOL" (= Short / Open / Load) - Kalibrierung darauf aufmerksam gemacht, dass wir noch nicht fertig sind und deshalb für eine komplette SOLT-Kalibrierung mit "Yes" weiter machen müssen. Dazu fehlt nämlich noch "Isolation" und "Through".

Ist das geschafft, kann "**apply**" angeklickt und damit die erfolgreiche Kalibrierung aktiviert werden.

Wichtig:

Vernünftig ist es, diese Kalibrierung unter einem eigenen Namen abzuspeichern (....wer weiß, wie viele andere Kalibrierungen noch dazu kommen werden...).

Als Beispiel: bei mir heißt sie "Poulsen_Suhner 30cm_50k – 900MHz_20Seg"

Aber bitte dann nicht vergessen, beim nächsten Start gleich das **richtige** Calibration File zu laden (..wenn man bereits einen Vorrat für verschiedene Frequenzbereiche oder Amateurfunk-Bänder angelegt hat...)

Man sollte sich nicht zu fein sein – speziell am Anfang! – , die korrekte Kalibrierung zu überprüfen und das machen wir im folgenden Kapitel.

13. Kontrolle des Kalibrier - Erfolgs

Vorsicht:

Diese Kurven sind NUR reproduzierbar, wenn alle SMA-Verbindungen nicht nur von Hand, sondern sorgfältig mit dem SMA-Drehmomentschlüssel angezogen wurden!

Die neue Programmversion bietet eine Vielzahl von Darstellungen an. Beginnen wir also mal mit dem **SHORT** und testen seie Qualität bis 900 MHz.

Hinweis:

Bei den kartesischen Diagrammen kann nun auch das Scrollrad der Maus zum Zoomen eingesetzt werden!

Sehr zufriedenstellend...

Es folgt dasselbe Spiel, aber nun mit dem $\ensuremath{\textbf{OPEN}}$ -Standard. Wieder von 50 kHz bis 900 MHz:

Bestens...

Wenn wir beide Messkabel über den "**Through**"-Adapter verbinden, dann kommen wir an den Verlauf von S21 heran:

Und den Abschluß der Kontrolle dient eine S11 - Vergleichsmessung mit dem VNWA3 und einem Präzisions-Abschluss:

14. Praxistest an einem 110 MHz - Tiefpass

Da wir gerade bis 900 MHz kalibriert haben, ist dies das richtige Messobjekt. Die Leiterplatte ist mit aufgeschraubten Kupferblechwinkeln versehen. Die tragen jeweils eine SMA - Buchse und so liegt deren Innenleiter reflexionsarm auf der zentralen Microstrip -Leitung auf.

Hier die Messungen im Bereich von 1 MHz bis 900 MHz.

Im Sperrbereich (= stop band) sollte **S11 = Null dB** sein....das passt....

Und bei **S21** sehen wir sehr schön, wie sein Wert nach dem Verlassen des Passbandes von Null dB bis auf – 80 dB sinkt.

Dann machen im Stopp Band die Bauteil -Eigenresonanzen etwas Arger. Aber selbst von 600 bis 900 MHz erreichen wir knapp 40 dB Sperrdämpfung.

15. Das Passband: Grunddämpfung und Group Delay für unseren Tiefpass

Was man da an Details als Entwickler wissen möchte, kann man sich nun auf den Bildschirm holen. Dazu wurde die **Frequenzachse auf 50 kHz ...200 MHz** umgestellt.

(Hinweis: es können **maximal 6 Diagramme** gleichzeitig dargestellt werden). Zu den **Markern** kommen wir im nächsten Kapitel.

Aber jetzt noch eine Warnung und Bitte zur Frequenzbereichs-Umstellung:

Bitte solche "Ausschnitt-Vergrößerungen bei der Frequenzachse" immer nur durch einen Rechtsklick auf das Diagramm, gefolgt von dem Aufruf "frequency" und der Eingabe des gewünschten Frequenzbereichs (Fixed Span) auf diese Weise vornehmen!

- ABER MÖGLICHST NIE ÜBER EINE VERÄNDERUNG DER START- UND/ODER STOPP-FREQUENZ IM LINKEN OBEREN MENÜ, gefolgt von einem neuen Sweep!

Wenn sich also ein neuer Sweep mit ganz anderen Grenzen nicht vermeiden lässt, muss man vorher erst neu kalibrieren bzw. ein passendes Calibration File laden!

Und noch ein Hinweis:

Sobald wir den NanoVNA vom PC aus betreiben, werden sofort alle auf dem Board in den Registern c0....c4 gespeicherten Kalibrierungen "eingefroren" und die saver-Software steuert ALLES. Mit ihrer Hilfe können wir beliebig viele neue Kalibrier-Files erzeugen, abspeichern und darunter wählen (...sie werden nämlich im Programmordner auf dem PC gespeichert).

Betreibt man den NanoVNA dagegen **allein**, dann gelten auch wieder dessen alte Kalibrierungen in c0....c4. Man holt sich dann mit RECALL, was man braucht.

16. Die Sache mit den Markern

Marker 1 (= unterhalb des Sweep-Menüs) wurde aktiviert und und eine Frequenz von 100 MHz eingetragen. Der Marker lässt sich anschließend durch "Ziehen mit der Maus" entlang der Kurve verschieben.

Marker 1				Maximal lassen sich drei Marker aktivieren. Man
Frequency:	99.8956 MHz	Parallel L:	2.113 µH	trägt ihre Frequenz ein, wählt ihre Farbe und sofort
Impedance:	54.1 +j2.211 Ω	Parallel C:	-1.202 pF	erscheinen sie im
Admittance:	54.19 +j1326.0 Ω	VSWR:	1.094	Diagramm.
Series R:	5 <mark>4</mark> .1Ω	Return loss:	-26.985 dB	Alle Daten, die zu jedem
Series L/C:	3.523 nH	Quality factor:	0.041	Marker gehoren, werden oben neben dem Sweep-
Series L:	3.523 nH	S11 Phase:	27.11°	Menü gelistet.
Series C:	-720.58 pF	S21 Gain:	-0.471 dB	v0.2.0. sind in dieser
Parallel R:	54.19 Ω	S21 Phase:	44.64°	Erbgebnis-Ausgabe
Parallel L/C:	2.113 µH			dazu gekommen).

Weitere Informationen:

a) wenn wir eine Markerfrequenz von z. B. **100 MHz** eingeben, dann wählt das Programm den nächstliegenden Frequenzpunkt, für den eine Kalibrierung vorhanden ist (hier: **99,8956 MHz**)

b) **Markergröße und Markerfarbe** lassen sich im Markermenü bzw. unter "Display-Settings" einstellen.

Außerdem können wir die **Markernummern** in der Ergebnisdarstellung neben ihren Markern einblenden.

c) Wen die Marker-Datenlisten stören, der kann sie mit "**hide data**" **ausblenden,** Dafür werden die rechten Diagramme entsprechend verbreitert:

17. Ein Bandpass für 10,7 MHz als zweites Praxisbeispiel

Das ist das gute Stück: ein Bandpass vom Tschebyschef -Typ mit einer Mittenfrequenz von 10,7 MHz und realisiert mit sehr verlustarmen Amidon Ringkern-Spulen (Q = 150). Das Ganze ist in ein gefrästes Aluminiumgehäuse eingebaut. Dem wollen wir mal auf den Zahn fühlen.

1. Schritt:

Bitte eine SOLT-Kalibrierung im Frequenzbereich von **5 MHz bis 15 MHz mit 20** Segmenten durchführen.

2. Schritt:

Das eben erzeugte Calibration File unter einem passenden Namen abspeichern und laden. Bei mir heißt es

"Suhner 30cm_Poulsen_5M-15M_20Seg"

3. Schritt:

Den Sweep von 5 MHz bis 15 MHz mit 20 Segmenten starten

Ergebnis:

Im linken Bild ist **S11** im Frequenzbereich von **5....15 MHz**, im rechten dagegen von **10 bis 11,5 MHz** zu sehen.

Außerdem wurde im rechten Bild ein Frequenzmarker für 10,7 MHz eingetragen.

Jetzt folgt S21:

Im linken Bild können wir die beachtlichen Sperrdämpfungen **bei 5 MHz (S11 = -90 dB) und bei 15 MHz (S11 = -60 dB)** bewundern.

Das rechte Bild zeigt den Durchlassbereich (passband) mt einer kleinsten Dämpfung von **2,1 dB f = 10,9 MHz**. Da fehlt wohl noch etwas Feinabgleich...

Solche Filterschaltungen zeigen bei der **S11-Darstellung im Smith Diagramm** sehr hübsche **Schleifen im Durchlassbereich** und das können wir ebenfalls aufrufen:

Hinweis:

Wir starten bei **5 MHz am Punkt "+1**" der waagrechten Achse.

Dann dreht sich die Kurve im Uhrzeigersinn und endet bei 15 MHz wieder beim gleichen Punkt "+1" Und noch einen Gefallen können wir uns tun:

17.1. Die Analysis-Automatik

Eine feine Sache, denn sie liefert fast alle überhaupt denkbaren Parameter einer Filterschaltung nach der Messung. Allerdings muss man die **Spielregeln genau einhalten** und die sehen z. B. für unser eben untersuchtes Bandpass - Filter für 10,7 MHz so aus.

1. Schritt:

Für eine ausreichend genaue **Kalibrierung** in diesem reduzierten Frequenzbereich sorgen. Ich habe dafür extra das SOLT Calibration File

Suhner 30cm_Poulsen final_50k - 50 MHz_20 Seg_avg = 3

erstellt, gespeichert und geladen. (In der Bezeichnung stecken folgende Informationen:

Suhner Kabel mit 30 cm Länge, fest installiert

Calibration settings /= letzte Version von Kurt Poulsen -- Siehe unser Manuskript

Frequenzbereich von 50 kHz.....50 MHz

Sweep-Bereich in 20 Segmente aufgeteilt

Unter "Sweep settings" wurde der "Averaging Sweep" zur Mittelwertbildung aus drei Messpunkten eingeschaltet – der mittelt deutlich das Rauschen aus

2. Schritt:

Es wird ein Sweep von 9,5 MHz bis 10,5 MHz mit 10 Segmenten gewählt.

Band-pass filter	
Low-pass filter	
Band-pass filter	
High-pass filter	
Band-stop filter	
Peak search	
VSWR analysis	

3. Schritt:

Das Menü **"Analysis"** (am unteren Rand der Bildschirm-Mitte wird geöffnet **und das Häkchen bei "Run automatically" entfernt.** Dann kann in diesem kleinen Menü auf "**Band-passfilter**" umgestellt werden.

Jetzt wird das Häkchen bei "Run automatically" wieder angebracht.

4. Schritt: Bei Marker 1 wird die Mittenfrequenz von 10,7 MHz eingetragen.

5. Schritt:

Sweep starten.

Das ergibt foldendes Ergebnis:

Die genauen Details findet man auf der linken Bildschirmhälfte (= folgende Seite):

- Bei "1" sind die genauen Markerfrequenzen aufgeführt.
- Marker 1 (= Liste 2) zeigt auf die exakte Mittenfrequenz von 10,771488 MHz. S21 (= Gain) beträgt dort -2,207 dB
- Marker 2 (Liste 3 für 10,485 MHz) stellt die Untere Grenzfrequenz dar. Bei Ihr nahm die Dämpfung um 3 dB zu, deshalb hat S21 den Wert -5,207 dB
- Marker 3 (Liste 4 bei 11,065774 MHz) bildet die Obere Grenzfrequenz. Wieder ist dort die Dämpfung um 3 dB angestiegen, deshalb messen wir dort erneut S11 = -5,207 dB.

Schließlich findet sich in Liste 5 bei S11 der minimale Wert des VSWR (1,103 bei 10,7962 MHz und der zugehörige dB-Wert von S11 = -26.227 dB

Auch diese S21 – Angaben dürfen nicht fehlen:

S21 max = -2.185 dB bei f = 10,8002 MHz / S21 min = -48,421 dB bei f = 9,50190 MHz

Sweep control Marker 1 Start 9.5e5 Center 10.5444 Stop 11.5e6 Span 2.00MHz Segments 10 1.980Htz/step Series R: 50.94 - (7.94 Ω) Segments 10 1.980Htz/step Series R: 50.94 - (7.94 Ω) Markers 100% Series L/C: 1.8607 nF SQuality factor: 0.156 Sweep Stop 100% Series L/C: 1.8607 nF S21 Gain: -2.207 d Marker 1 1007/1488 Impedance: 26.14 - (39.2 Ω) Parallel L: -45.9.60 Marker 3 10055774 Impedance: 26.14 - (39.2 Ω) Parallel C: 266.04 µ Marker 3 10055774 Impedance: 26.14 - (39.2 Ω) Parallel C: 266.04 µ TDR Estimated cable length: 0.0 m Series L/C: 387.23 pF Sult Phase: 94.08 Series C: 330.3 2 µ/G: Series C: 330.3 4/40.36 Ω Sult Phase: 124.97 Parallel L/C: 268.04 µF Parallel		
Start 9.5e6 Stop Center 10.5enter Stop 11.5e6 Span Span 2.00MHz Segments 10 1.980Htz/step Segments 1.980Htz/step Sweep settings 1.980Htz/step Sweep settings 1.980Htz/step Sweep Stop Sweep Stop Sweep Stop Marker 1 10771488 Marker 2 10485028 Marker 3 11065774 Marker 3 11065774 Marker 3 1065774 Marker 4 Locked TDR Series 1/C: 387.23 pF Series 1/C: 387.23 pF S21 Gain: 5.256 d Series 1/C: 380.31 H S11Phase: 94.08 S21 Gain: 5.256 d S21 Phase: 124.97 Parallel 1/C: 268.04 pF Parallel 1: 969.25 r Parallel 1/C: 268.04 pF Parallel 1: 969.25 r Parallel 1/C: 268.04 pF Parallel 1: 969.25 r Parallel 1/C:	Sweep control	Marker 1
Stop 11.5e6 Span 2.00MHz Impedance: 50.94 - 37.94 Ω Parallel C: 44.129 µ Segments 10 1.980kHz/step Series R: 50.94 Ω Return loss: -22.052 Sweep settings 100% Series IC: 1.8607 nF Quality factor: 0.156 Sweep Stop Series C: 1.8607 nF S21 Gain: -2.207 d Marker 1 10771488 Impedance: 26.14 - J39.2 Ω Admittance: Parallel L: -859.60 Marker 2 10485028 O Admittance: 84.94 - J56.63 Ω Series R: 26.14 - J39.2 Ω Marker 3 11065774 O Series R: 26.14 - J39.2 Ω Admittance: 48.94 - J56.63 Ω TDR 100485008 Parallel L/C: 48.94 - J56.63 Ω Series C: 387.23 pF S21 Gain: -5.256 d Stil Phase: -94.08* S21 Gain: -5.256 d S21 Phase: 124.97* TDR Tomain Reflectometry 44 Parallel LC: 268.04 pH S21 Phase: 124.9	Start 9.5e6 Center 10.50	Frequency: 10.7724MHz Parallel L: -4.9464 μ
30;0 11:3:0 1.980H1z/step Segments 10 1.980H1z/step Sweep settings Series R: 50.94 Ω 100% Series L(C: 1.8607 nF 100% Series L(C: 1.8607 nF 100% Series L: 1.17.3 1 nH Series L: 1.8607 nF S21 Gain: -22.07 d Marker 1 10771488 Impedance: 26.14 / 129 pF S21 Phase: -20.69° Marker 2 10485028 Impedance: 26.14 / 139.2 Ω Admittance: 44.94 / 143.9 Ω Parallel L: -859.60 Marker 3 11065774 Impedance: 26.14 Ω Parallel L: -859.60 Marker 3 11065774 Impedance: 28.7.23 pF S11 Phase: -94.08° Series R: 23.03 nH S11 Phase: -94.08° S21 Phase: 124.97° TDR Estimated cable length: 0.0 m marker 3 Frequency: 11.0658MHz Parallel L: 969.25r Time Domain Reflectometry 4 Parallel R: 84.94 Ω S21 Phase: 124.97° Parallel R: 8.30.3 Ω	Stop 11 5e6 Spap 2 00MHz	Impedance: 50.94 -j7.94 Ω Parallel C: 44.129 pl
Segments 10 1.980kHz/step Series R: 50.94 Ω Return loss: -22.052 Sweep settings 100% Series I: -117.31 nH S11 Phase: -78.75° Sweep Stop Parallel R: 52.18 Ω Parallel R: 52.18 Ω Marker 1 10771488 Impedance: 26.14 µ39.2 Ω Parallel L: -859.60 Marker 2 10485028 Impedance: 26.14 µ39.2 Ω Parallel C: 268.04 µ Marker 3 11065774 O Series R: 26.14 Ω Parallel C: 268.04 µ Marker 3 11065774 O Series R: 26.14 Ω Parallel C: 268.04 µ Marker 3 11065774 O Series R: 26.14 Ω Quality factor: 1.5 Stil Phase: -94.08° Series C: 387.23 pF Stil Phase: -94.08° Stil Phase: -94.08° Series C: 387.23 pF Stil Phase: -94.08° Stil Phase: -94.08° Series C: 30.3 µ Parallel L': 969.25 r P		Admittance: 52.18 -j334.8 Ω VSWR: 1.171
Sweep settings Series L/C: 1.8607 nF Quality factor: 0.156 Sweep Stop Stop Series C: 1.8607 nF S21 Gain: -2.207 d Marker 1 100771488 Impediance: 22.18 Ω S21 Phase: -20.69° Marker 2 10485028 Impedance: 26.14 + 39.2 Ω Parallel L: -859.60 Marker 3 11065774 Impedance: 26.14 + 39.2 Ω Parallel L: -859.60 Marker 3 11065774 Impedance: 26.14 + 39.2 Ω Parallel L: -859.60 Marker 3 11065774 Impedance: 26.14 Ω Parallel L: -859.60 Marker 3 11065774 Impedance: 26.14 Ω Parallel L: -859.60 TDR Estimated cable length: 0.0 m Series L: 595.03 nH S11 Phase: -5.418 d Parallel L/C: 26.04 pF Parallel L: 969.25 r Impedance: 33.03 + 940.36 Ω Parallel L/C: 268.04 pF Parallel L: 969.25 r Parallel L: 969.25 r <	Segments 10 1.980kHz/step	Series R: 50.94 Ω Return loss: -22.052 c
Series L: -117.31 nH S11 Phase: -78.75° Sweep Stop Series C: 1.8607 nF S21 Gain: -2.207 d Marker 1 10771488 Impediance: 52.18 Ω S21 Phase: -20.69° Marker 2 10485028 Impediance: 26.14 µ39.2 Ω Parallel L: -859.60 Marker 3 11065774 Impediance: 26.14 µ39.2 Ω Parallel C: 268.04 g Marker 3 11065774 Impediance: 26.14 µ39.2 Ω Parallel L: -859.60 Marker 3 11065774 Impediance: 26.14 µ39.2 Ω Parallel L: -94.08° Series L: -595.03 nH S11 Phase: -94.08° S21 Gain: -5.256 d TDR Estimated cable length: 0.0 m Series L: -595.03 nH S11 Phase: 94.08° Series L: -595.03 nH S11 Phase: 94.08° S21 Gain: -5.256 d TDR Estimated cable length: 0.0 m Series L: 580.49 pF S21 Gain: -5.216 d Marker 3 Frequency: 11.0658MHz Parallel L: 969.25 n Ma	Sweep settings	Series L/C: 1.8607 nF Quality factor: 0.156
100% Series C: 1.8607 nF \$21 Gain: -2.207 d Sweep Stop Parallel R: \$2.18 Ω \$21 Phase: -20.69° Marker 1 10771483 • • Parallel L/C: 44.129 pF Parallel L: -859.60 Marker 2 10485028 • • Parallel L/C: 44.129 pF Parallel L: -859.60 Marker 3 11065774 • • • Parallel J: -859.63 Ω Marker 3 11065774 • • • Parallel J: -859.63 Ω Marker 3 11065774 • • • Parallel J: 94.08° Series L/C: 387.23 pF S21 Gain: -5.216 d S21 Phase: -5.418 d TDR Estimated cable length: 0.0 m • Series L/C: 387.23 pF S21 Gain: -5.256 d Time Domain Reflectometry 4 Parallel R: 84.94 Ω Parallel L: 969.25 n Marker 3 • 94.08° S21 Phase: 124.97° 97° Marker 3 • 94.08° S21 Phase: 124.97°<		Series L: -117.31 nH S11 Phase: -78.75°
Sweep Stop Parallel R: 52.18 Ω S21 Phase: -20.69° Marker 1 10771488 • • Parallel L/C: 44.129 pF Marker 2 10485028 • • Parallel L/C: 44.129 pF Marker 3 11065774 • • Parallel L: -859.60 Marker 3 11065774 • • Parallel L: -859.60 Marker 3 11065774 • • Parallel L: -859.60 Marker 3 11065774 • • Parallel L: -94.08° Series C: 387.23 pF Quality factor: 1.5 Series C: 387.23 pF S21 Gain: -5.256 d Series C: 387.23 pF S21 Gain: -5.256 d S21 Phase: 124.97° Parallel R: 84.94 Ω S21 Phase: 124.97° Parallel L/C: 288.04 pF * Parallel L/C: 280.4 pF Marker 3 S21 Phase: 124.97° Parallel L/C: 280.4 pF Marker 3	100%	Series C: 1.8607 nF S21 Gain: -2.207 dB
Marker s Parallel L/C: 44.129 pF Marker 1 10771488 Marker 2 10485028 Marker 3 11065774 Marker 3 11065774 Marker 3 1065774 Marker 3 1065774 Marker 3 1065774 Marker 3 1065774 Marker 4 Locked 0 TDR Series 1: Estimated cable length: 0.0 m Series C: Time Domain Reflectometry Parallel L/C: 268.04 pF Parallel L/C: 268.04 pF Series 2: Parallel L/C: 268.04 pF Series 2: Marker 3 Series 2: Time Domain Reflectometry Parallel L/C: 268.04 pF Parallel L/C: 268.04 pF Parallel L: Marker 3 Frequency: 11.0658MHz Parallel L/C: 268.04 pF Parallel L: Marker 3 Parallel L/C: 268.04 pF Parallel L/C: 268.04 pF Parallel C: -213.42 VSWR: 2.804 Return loss: -6.48 dB Quality factor: 1.222 Series L/C: S80.48 nH Sci Parallel R: 82.34 µG S21 Phase: -162.06 Parallel R: 82.34 µG S21 Phase:	Sweep Stop	Parallel R: 52.18 Ω S21 Phase: -20.69°
Marker 1 10771488 Marker 2 Marker 2 10485028 Marker 2 Marker 3 11065774 Marker 2 Hide data Locked Locked Hide data Locked Series R: 26.14 Ω Series R: 26.14 Ω Return loss: -5.418 d Marker 3 11065774 C Series R: 26.14 Ω Hide data Locked Series R: 26.14 Ω Return loss: -5.418 d TDR Series C: 387.23 pF S21 Gain: -5.256 d Estimated cable length: 0.0 m Series C: 287.23 pF S21 Gain: -5.256 d Time Domain Reflectometry Marker 3 Parallel L: 969.25 n Parallel L: 969.25 n Marker 3 Trequency: 11.0658MHz Parallel L: 969.25 n Marker 3 Series R: 3.03 Ω Superior R: Superio R: Superio R: <		Parallel L/C: 44.129 pF
Marker 1 10771488 Image: Second	Markers	Marker 2
Marker 2 10485028 Impedance: 26.14-j39.2 Ω Parallel C: 268.04 g Marker 3 11065774 O Series R: 26.14 Ω NWR: 3.309 Marker 3 11065774 O Series R: 26.14 Ω Return loss: -5.418 d Marker 3 Locked O Series R: 26.14 Ω Return loss: -5.418 d Quality factor: 1.5 TDR Series L/C: 387.23 pF S21 Gain: -5.256 d S21 Gain: -5.256 d S21 Phase: 124.979 TDR Series C: 387.23 pF S21 Gain: -5.256 d S21 Phase: 124.979 Parallel L/C: 268.04 pF Marker 3 Parallel L/C: 268.04 pF Parallel L: 969.25 r Time Domain Reflectometry Marker 3 Parallel L/C: 268.04 pF Parallel C: -213.42 Marker 3 Prequency: 11.0658MHz Parallel C: -213.42 VSWR: 2.804 Return loss: -6.48 dB Series L/C: 580.48 nH Sulliv factor: 1.222 Series L: 580.48 nH Series L/C: 580.48 nH S11 Phase: 96.839 S21 Gain: -5.219 d S21 Phase: 162.061 Parallel L/C: 969.25 nH S11 Phase: 96.899 S21 Gain: -5.219 d S21 Phase: 162.061 S11 Min VSWR: 1.103 @ 10.7962MHz S21 Phase: 162.061 S21 Min VSWR	Marker 1 10771488	Frequency: 10.4850MHz Parallel L: -859.60 r
Marker 2 1043023 C Marker 3 11065774 C Hide data Locked O Hide data Locked O TDR Series R: 26.14 Ω Estimated cable length: 0.0 m Series C: 387.23 pF Time Domain Reflectometry Series C: 387.23 pF Yarallel L/C: 268.04 pF Marker 3 Time Domain Reflectometry Marker 3 Parallel L/C: 268.04 pF Parallel L/C: 268.04 pF Marker 3 Series R: 33.03 Ω Series R: 33.03 Ω Series R: Series L/C: 580.48 nH Sult Hoss: Series L/C: 580.49 pF Sult Hoss: Sult Hoss:	Marker 2 10495028	Impedance: 26.14 -j39.2 Ω Parallel C: 268.04 pl
Marker 3 11065774 C Series R: 26.14 Ω Return loss: -5.418 d Hide data Locked O Series L/C: 387.23 pF Quality factor: 1.5 TDR Series C: 387.23 pF S21 Gain: -5.256 d Estimated cable length: 0.0 m Series C: 387.23 pF S21 Gain: -5.256 d Time Domain Reflectometry Marker 3 Trequency: 11.0658MHz Parallel L: 969.25 r Marker 3 Parallel L/C: 268.04 pF Parallel C: -213.42 VSWR: 2.804 Return loss: -6.48 dB Quality factor: 1.22 Series L: 580.48 nH Series L: 580.48 nH S21 Phase: -6.48 dB Quality factor: 1.22 S11 Phase: 86.89° Series L: 580.48 nH S21 Gain: -5.219 d Series L: 580.48 nH S21 Phase: -162.060 Parallel R: 82.34 Ω Parallel L: 969.25 nH Solid Gain: -5.219 d S21 Gain: -5.219 d S21 Min VSWR: 1.103 @ 10.7962M		Admittance: 84.94 -j56.63 Ω VSWR: 3.309
Hide data Locked O Series L/C: 387.23 pF Quality factor: 1.5 TDR Series L: -595.03 nH S11 Phase: -94.08° Estimated cable length: 0.0 m Parallel R: 84.94 Ω S21 Gain: -5.256 d Time Domain Reflectometry Marker 3 Parallel L/C: 268.04 pF S21 Phase: 124.97° Marker 3 Frequency: 11.0658MHz Parallel L: 969.25 n Marker 3 Frequency: 11.0658MHz Parallel C: -213.42 Admittance: 82.34 +j67.39 Ω VSWR: 2.804 Series L/C: 580.48 nH Quality factor: 1.22 Series L: 580.48 nH Sulty factor: 1.22 Series L: 580.48 nH Sulty factor: 1.22 S11 Phase: 86.89° S21 Gain: -5.219 d Parallel L/C: 969.25 nH S11 Phase: 86.89° S21 Gain: -5.219 d S11 Phase: 2.804 Retern loss: -2.356.36 pF Parallel L/C: 969.25 nH S11 Min VSWR: 1.103 @ 10.7962MHz S21 Phase:	Marker 3 11065774	Series R: 26.14 Ω Return loss: -5.418 dB
TDR Series L: -595.03 nH S11 Phase: -94.08° Estimated cable length: 0.0 m Series C: 387.23 pF S21 Gain: -5.256 d Parallel R: 84.94 Ω S21 Phase: 124.97° Parallel L/C: 268.04 pF Parallel L: 969.25 n Marker 3 Frequency: 11.0658MHz Parallel L: 969.25 n Marker 3 Frequency: 11.0658MHz Parallel C: -213.42 VSWR: 2.804 Series R: 33.03 Ω Series L/C: 580.48 nH Sulty factor: 1.222 Series L/C: 580.48 nH S11 Phase: 86.89° Series C: -356.36 pF S21 Gain: -5.219 d Series L: 580.48 nH S11 Phase: 86.89° S21 Gain: -5.219 d Series L: 580.48 nH S11 Phase: -162.061 Parallel L/C: 969.25 nH S11 Phase: -162.061 Parallel L/C: 969.25 nH S21 Phase: -162.061 S21 Min VSWR: 1.103 @ 10.7962MHz S21 Phase: -162.061 Return loss: -26.227 dB S21	Hide data	Series L/C: 387.23 pF Quality factor: 1.5
TDR Series C: 387.23 pF \$21 Gain: -5.256 d Estimated cable length: 0.0 m Parallel R: 84.94 Ω \$21 Phase: 124.97° Time Domain Reflectometry Marker 3 Parallel L/C: 268.04 pF Parallel L: 969.25 r Marker 3 Frequency: 11.0658MHz Parallel C: -213.42 Admittance: 82.34 +j67.39 Ω VSWR: 2.804 Series R: 33.03 Ω Return loss: -6.48 dB Series L/C: 580.48 nH Quality factor: 1.222 Series L: 580.48 nH S21 Gain: -5.219 dS Series L: 580.48 nH S21 Phase: -162.060 Parallel L/C: 969.25 nH S21 Phase: -162.060 S21 Min VSWR:		Series L: -595.03 nH S11 Phase: -94.08°
Parallel R: 84.94 Ω S21 Phase: 124.97° Time Domain Reflectometry Marker 3 Marker 3 Frequency: 11.0658MHz Parallel L: 969.25 r Impedance: 33.03 +j40.36 Ω Admittance: 82.34 +j67.39 Ω SWR: 2.804 Series R: 33.03 Ω Series L/C: 580.48 nH Quality factor: 1.222 Series C: -356.36 pF Sale B: 2.34 Ω Parallel L: 969.25 nH Series C: -356.36 pF Parallel L: 969.25 nH Series C: -356.36 pF Parallel L/C: 969.25 nH S11 Phase: 86.89° S21 Gain: -5.219 d S11 Phase: -162.061 Parallel L/C: 969.25 nH S11 Min VSWR: 1.103 @ 10.7962MHz Reference sweep Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz	TDR	Series C: 387.23 pF S21 Gain: -5.256 dB
Time Domain Reflectometry Parallel L/C: 268.04 pF Marker 3 Frequency: 11.0658MHz Parallel L: 969.25 r Impedance: 33.03 +j40.36 Ω Parallel C: -213.42 Admittance: 82.34 +j67.39 Ω VSWR: 2.804 Series R: 33.03 Ω Series L/C: 580.48 nH Quality factor: 1.222 Series L/C: 580.48 nH Quality factor: 1.222 Series C: -356.36 pF S21 Gain: -5.219 d Parallel L/C: 969.25 nH S21 Phase: -162.060 Parallel L/C: 969.25 nH S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 S21 Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz	Estimated cable length: 0.0 m	Parallel R: 84.94 Ω S21 Phase: 124.97°
Marker 3 Image: Series L: Series C: -356.36 pF Series L: Series C: -356.36 pF Series L: Series L: <td></td> <td>Parallel L/C: 268.04 pF</td>		Parallel L/C: 268.04 pF
4 Frequency: 11.0658MHz Parallel L: 969.25 r Impedance: 33.03 +j40.36 Ω Parallel C: -213.42 Admittance: 82.34 +j67.39 Ω VSWR: 2.804 Series R: 33.03 Ω VSWR: 2.804 Series L/C: 580.48 nH Quality factor: 1.222 Series L: 580.48 nH S11 Phase: 86.89° Series C: -356.36 pF S21 Gain: -5.219 d Parallel L/C: 969.25 nH S21 Phase: -162.069 S11 Min VSWR: 1.103 @ 10.7962MHz S21 Phase: -162.069 S21 Min VSWR: 1.103 @ 10.7962MHz S21 S21 Min gain: -48.421 dB @ 9.50190MHz Min gain: -2.185 dB @ 10.8002MHz	Time Domain Reflectometry	Marker 3
 Frequency: 11.0050MH2 Parallel L: 999.23 F Impedance: 33.03 +j40.36 Ω Parallel C: -213.42 Admittance: 82.34 +j67.39 Ω VSWR: 2.804 Series R: 33.03 Ω Return loss: -6.48 dB Series L/C: 580.48 nH Quality factor: 1.222 Series L: 580.48 nH S11 Phase: 86.89° Series C: -356.36 pF S21 Gain: -5.219 d S21 Gain: -5.219 d S21 Gain: -5.219 d S21 Phase: -162.060 Parallel L/C: 969.25 nH S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Min gain: -2.185 dB @ 10.8002MHz 		Francisco II OSEOMHA
Admittance: 33.03 + j+0.38 Ω Parallel C: -213.42 Admittance: 82.34 + j67.39 Ω VSWR: 2.804 Series R: 33.03 Ω Return loss: -6.48 dB Series L/C: 580.48 nH Quality factor: 1.222 Series L: 580.48 nH S11 Phase: 86.89° Series C: -356.36 pF S21 Gain: -5.219 d Parallel L/C: 969.25 nH S21 Phase: -162.060 Parallel L/C: 969.25 nH S21 Phase: -162.060 S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Min gain: -2.185 dB @ 10.8002MHz	4	Impodence: 22.02 US40.25 C Decelle C 212.42 r
Reference sweep Admittance: 62.04 + (07.39 s2 V3WC. 2.004 Series R: 33.03 Ω Return loss: -6.48 dB Series L/C: 580.48 nH Quality factor: 1.222 Series L: 580.48 nH S11 Phase: 86.89° Series C: -356.36 pF S21 Gain: -5.219 d Parallel R: 82.34 Ω S21 Phase: -162.064 Parallel L/C: 969.25 nH S11 S11 Phase: -162.064 St1 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz	_	Admittance: 82.34 ±i67.30 0 VSWD: 2.804
Schesk: 55.0532 Retain loss: 0.1640 Series L/C: 580.48 nH Quality factor: 1.222 Series L: 580.48 nH S11 Phase: 86.89° Series C: -356.36 pF S21 Gain: -5.219 d Parallel R: 82.34 Ω S21 Phase: -162.069 Parallel L/C: 969.25 nH S21 Phase: -162.069 S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Min gain: -2.185 dB @ 10.8002MHz		Series P: 33.03.0 Peturn loss: -6.48 dB
Series L: 580.48 nH \$11 Phase: 86.89° Series C: -356.36 pF \$21 Gain: -5.219 d Parallel R: 82.34 Ω \$21 Phase: -162.060 Parallel L/C: 969.25 nH \$11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Min gain: -2.185 dB @ 10.8002MHz		Series L/C: 580,48 nH Quality factor: 1,222
Series C: -356.36 pF S21 Gain: -5.219 d Parallel R: 82.34 Ω S21 Phase: -162.060 Parallel L/C: 969.25 nH S11 S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Min gain: -2.185 dB @ 10.8002MHz		Series L: 580,48 nH S11 Phase: 86.89°
Parallel R: 82.34 Ω S21 Phase: -162.064 Parallel L/C: 969.25 nH S11 S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz S21 Max gain: -2.185 dB @ 10.8002MHz S21		Series C: -356.36 pF S21 Gain: -5.219 dE
Parallel L/C: 969.25 nH 511 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz		Parallel R: 82.34 Ω S21 Phase: -162.06°
S11 Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz		Parallel L/C: 969.25 nH
Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz	- 1	S11
Min VSWR: 1.103 @ 10.7962MHz Return loss: -26.227 dB S21 Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz	n	
Reference sweep Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz	\checkmark	Min VSVVR: 1.103 @ 10.7962MHz
S21 Reference sweep Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz		Keturn 1055: -26.227 08
Reference sweep Min gain: -48.421 dB @ 9.50190MHz Max gain: -2.185 dB @ 10.8002MHz		S21
Max gain: -2,185 dB @ 10.8002MHz	Reference sween	Min gain: -48.421 dB @ 9.50190MHz
	Neterence sweep	Max gain: -2.185 dB @ 10.8002MHz
Set current as reference	Set current as reference	

Doch es geht noch weiter, denn wenn man sich zusätzlich nochmals das "**Analysis-Menü**" auf den Schirm holt, sieht man noch viel mehr – **lauter interessante Details:**

💮 Sweep analysis		—		×
Select analysis				
Analysis type Ban	d-pass filter			\sim
	Run analysis			
Run automatica	lly			
Analysis				
Band pass filter and	alysis			
Please place Marke	r 1 in the filter pa	ssband.		
Result:	Analysis complet	æ (1010	points)	
Center frequency:	10.7715MHz			
Bandwidth (-3 dB):	580.746kHz			
Quality factor:	18.55			
Bandwidth (-6 dB):	685.828kHz			
Lower side:				
Cutoff frequency:	10.4850MHz (-3	. 1 dB)		
-6 dB point:	10.4374MHz			
-60 dB point:				
Roll-off:	463.356 dB / oct	tave		
Roll-off:	1539.234 dB / d	ecade		
Upper side:				
Cutoff frequency:	11.0658MHz (-3	.0 dB)		
-6 dB point:	11.1233MHz			
-60 dB point:	12.2939MHz (de	rived)		
Roll-off:	370.049 dB / oct	tave		
Roll-off:	1229.276 dB / d	ecade		

17.2. Set Sweep as Reference

Eine praktische Sache, denn damit kann man die Ergebnisse einer Änderung mit dem vorigen Zustand vergleichen.

1. Schritt:

Man sollte (wenn man mit dunklem Hintergrund arbeitet) zuerst die **Farbe** für die **Referenzdarstellung** ändern. Die **default - Einstellung ist nämlich dunkelblau** und diese Kurve ist dann auf dem schwarzen Diagramm **fast nicht zu erkennen. Gelb oder Pink bewähren sich da gut.**

(Zur Erinnerung dient auch der grüne Kasten:

hier können wir alles an den **Markern** verstellen – Einblendung der Marker-Nummer / leeres oder gefülltes Dreieck / Markierung des Messpunktes mit der Mitte oder der unteren Spitze des Dreiecks....)

2. Schritt:

Jetzt sweepen wir und klicken dann in der linken unteren Ecke auf

Set current as reference

3. Schritt:

Ich habe nun das Bandpass-Filter ganz leicht verstimmt und nochmals gemessen. Die dadurch entstehenenden leichten Änderungen der Filterdaten erkennt man stets immer am besten an der Eingangs-Reflektion S11:

Reset reference

Persönliche Anmerkung:

Reset reference

Schade, dass ein Sweep solange dauert. Deshalb eignet sich diese Methode schlecht oder erst mit viel Erfahrung zum Feinabgleich eines Filters, da man nach jeder Korrektur einfach viel zu lange warten muss...

17.3. Speichern der erzeugten Touchstone Files für S11 und S21

Nach einer weiteren Abgleich-Prozedur und einem neuen Sweep:

So sieht jetzt eine Test-Simulation mit dem **S11 - file unter der Software "Ansoft Designer SV**" aus. (Diese kann aus meiner Hompage <u>www.gunthard-kraus.de</u> heruntergeladen werden).

Und nun noch S21:

Bitte mal mit den Ergebnissen in Kapitel 17.1. vergleichen...

Hinweis:

Die Software ist leider (noch?) nicht in der Lage, beide Größen (S11 und S21) wie gewohnt gleichzeitig in ein einziges S-Parameter-File zu schreiben. Es bleibt also bei deser Darstellung in zwei getrennten Diagrammen....

18. Drittes Beispiel: Ermittlung der Eigenschaften einer Filterspule

Auch das geht mit dem NanoVNA und im nebenstehenden Bild ist sie zu sehen. Es handelt sich um ein älteres Exemplar der Firma Neosid mit einer Grundfläche von 7,5 mm x 7,5 mm.

Sie wurde an eine SMA-Buchse angelötet und kann damit direkt an das Messkabel von Channel "CH0"

angeschlossen werden.

Wissen wollen wir:

a) den Verlauf von Blindwiderstand und Verlustwiderstand von 50 kHz bis 100 MHz

b) den Verlauf der Spulengüte Q = f(f) in diesem Frequenzbereich

c) den exakten Wert der Induktivität L, der Güte Q, den Verlustwiderstand und die Induktivät bei f = 30 MHz

Wir starten also den Sweep von 50 kHz bis 100 MHz und lassen uns diese Sachen anzeigen.

S11 R+jX (Ω) 126.0 110.2 657.1 94.5 563.2 **30 MHz** 78.8 63.0 47.2 281.6 31.5 187.8 15.8 93.9 50.0N 75.0N

a) **R und X = f(f)**

Man sieht am Kurvenverlauf, dass etwa ab **50 MHz die Induktivität größer** wird (= X - Kurve wird steiler).

469.4 Dafür nehmen ab dieser Frequenz die Verluste immer schneller zu
375.5 (= R - Kurve)

b) **Güte Q = f(f)**

Das Güte-Maximum liegt eindeutig bei f = 30 MHz mit Q = 119

	Marker 1					
	Frequency:	30.6929MHz		Parallel L:	992.48 nł	ן ו
ľ	Impedance:	1.606 +j191.4	Ωt	Parallel C:	-27.092 p	F
	Admittance:	22.8k +j191.4	Ω	VSWR:	487.19	
	Series R:	1.606 Ω		Return loss:	-0.036 dB	, P
	Series L/C:	992.48 nH		Quality factor:	119.1	L
C	Series L:	992.48 nH		S11 Phase:	29.28°	
	Series C:	-27.092 pF		S21 Gain:	-89.908 d	в
	Parallel R:	22.8k Ω		S21 Phase:	-75.65°	
	Parallel L/C:	992,48 nH				

c) Das Markerfenster liefert über Marker 1 diese genauen Daten für f = 30 MHz:

R = 1,606 Ω

L = 992,48 nH

Q = 119,1

39

19. Ferritantenne für VLF-Experimente

Ferritantennen aus alten Radios eignen sich hervorragend für den Bau von VLF-Antennen, mit denen der Frequenzbereich von 0.....150 kHz untersucht werden kann. Dort gibt es viele interessante Dinge – von der Uboot-Kommunikation über "Schumann-Resonanzen des Erdballs" bis hin zu Zeitzeichen-Sendern wie DCF77.

Da ist es kein Schaden, wenn man sich mit Hilfe des NanoVNA über die Eigenschaften des verwendeten Ferritmaterials schlau macht. Und das geht so:

> vorhandenen Wicklungen entfernt und dafür 10 Windungen Kupferlackdraht CuL mit 0,5 mm Durchmesser aufgebracht. Die Enden dieser Spule werden an eine SMA-Buchse gelötet und die wird mit den Messkabeln des NanoVNA verbunden.

Zuerst werden die alten,

Nach dem Start des NanoVNA samt PC und NanoVNA-saver-Software müssen wir zuerst eine Kalibrierung für den Frequenzbereich von 50 kHz bis 5 MHz mit 20 Segmenten erstellen. Das entstandene Calibration File wird unter einem interessanten Namen (bei mir: "Suhner 30cm_Poulsen_50k - 5MHz_20Seg") gespeichert und geladen.

S11R+jX (Ω) R 8.0 288.0 252.2 7.0 6.0 216.5 5.0 180.8 145.0 4.0 109.2 3.0 MHz 2.0 73.5 1.0 37.8 2 2525k 3762k 40000

Dann wird in diesem Frequenzbereich gemessen und ausgewertet. Fangen wir mit **R und X** an.

Es ist gut zu erkennen, dass der Verlustwiderstand R oberhalb von 1....1,5 MHz schnell und brutal ansteigt. Entsprechend schnell wird deshalb die Güte sinken.

(Das ist wohl unvermeidlich, denn diese Ferritantenne wurde in einem alten Röhrenradio nur für den Mittelwellenbereich von 500 kHz bis 1600 kHz eingesetzt).

Die Sache mit dem Güte-Abfall haben wir nun schon geahnt und hier ist die Bestätigung.

(Immerhin: Q = 157,7 bei 1 MHz ist kein übler Wert...)

	Marken 1						
	Marker 1					E	3
	Frequency:	1.00151MH	lz	Parallel L:	8.6244 µ	н	V
I	Impedance:	0.344 +j54	.27 Ω	Parallel C:	-2.9282	nF (r ۲
	Admittance:	8559.0 +j5	4.27 Ω	VSWR:	316.485		-
I	Series R:	0.344 Ω		Return loss:	-0.055 di	в	L
Ī	Series L/C:	8.6244 µH		Quality factor:	157.7		
	Series L:	8.6244 µH		S11 Phase:	85.31°	I	V
	Series C:	-2.9282 nF		S21 Gain:	-80.696	dB /	4
	Parallel R:	8559.0 Ω		S21 Phase:	-9.18°	ł	= r
	Parallel L/C:	8.6244 uH				i	S

Bei f = 1 MHz finden wir über **Marker 1** alle weiteren nformationen. Wichtig ist dort die Induktivität mit

L = 8,6244 µH

Mit ihrer Hilfe können wir den AL-Wert berechnen, der zur Erzielung anderer Induktivitätswerte erforderlich ist.

Mit L = 8,6244 µH = 8622,4 nH und N = 10 erhalten wir

$AL = L / N^2 = 8622,4nH / 100 = 86,22 nH$

Aber Vorsicht, denn die Praxis bei der Herstellung neuer Antennen zeigt: Wegen des großen Streufeldes eines solchen Ferritstabes steigt die Induktivität nicht mehr genau nach der bekannten Formel

 $L = AL \times N^2$

sondern deutlich schwächer. Man kommt also um ein Muster, eine Kontrollmessung und einer Korrektur der Windungszahl nicht herum.

20. Fünftes Beispiel: Ganzwellen-Loop - Antenne für das 70cm - Band Sie besteht aus einem Stück Draht (mit 2mm Durchjmesser), dessen Länge **genau einer Wellenlänge bei der vorgesehenen Betriebsfrequenz entspricht** (...bei f = 433 MHz wären das 693 mm).

Dieser Draht wird zum Kreis gebogen und der weist dann einen Durchmesser von 22 cm auf.

Diese Antenne sollte immer **erdsymmetrisch** betrieben werden und deshalb sind Drahtanfang und Drahtende an eine **Symmetrier-Einrichtung** angeschlossen. Bei diesem Exemplar ist das ein **"Lambda-Viertel-Symmetriertopf"**.

Am anderem Ende des Topfes finden wir eine **SMA-Buchse zur Einspeisung des Sendesignals über ein Koaxialkabel** – also vorschriftsmäßigen unsymmetrischen Betrieb.

Über die Entwurfsprozedur mit dem Programm 4NEC2, die genauen Eigenschaften, die Strahlungsdiagramme und den praktischen Aufbau mit dem Symmetriertopf erscheint demnächst ein ausführlicher Artikel in der Zeitschrift "UKW-Berichte". Dieser Artikel steht anschließend in meiner Homepage (<u>www.gunthard-kraus.de</u>) zum Download und zum Nachlesen zur Verfügung.

Aus diesem Artikel stammt auch die 3D-Simulation der Abstrahlung einer solchen Antenne mit 4NEC2 (...das Strahlungsmaximum ist rot bzw. violett gefärbt).

Und hier das Werk des NanoVNA zum Vergleich:

Marker 1		_				
Frequency:	437.562MHz		Parallel L:	319.14 nH		
Impedance:	45.77 +j2.394	Ω	Parallel C:	-414.56 fF		
Admittance:	45.9 +j877.4 s	2	VSWR:	1.107		
Series R:	45.77 Ω		Return loss:	-25.895 dB		
Series L/C:	870.77 pH		Quality factor:	0.052		
Series L:	870.77 pH		S11 Phase:	149.05°		
Series C:	-151.93 pF		S21 Gain:	-55.417 dB		
Parallel R:	45.9 Ω		S21 Phase:	-23.4°		
Parallel L/C:	319.14 nH					

Diese Informationen liefert dazu der **Marker 1**

Teil 3: Stand alone Betrieb

21. Bedienermenü für den NanoVNA

22. Direkte Bekanntschaft mit dem Gerät

Da sorgt man zuerst dafür, dass beide RF - Eingänge offen sind und startet. **Fehlt der Akkumulator, dann schließt den NanoVNA z.B. über das mitgelieferte USB-Kabel beim Laptop oder PC an**. Der Rechner muss dazu eingeschaltet werden, um die gewünschten +5V zu liefern, **aber wir brauchen ihn nur als Power Supply**.

Leider passierte bei mir gar nichts – keine LED leuchtete nach dem Betätigen des Netzschalters und der Bildschirm blieb dunkel. So war bereits die erste Nacharbeit angesagt, denn die USB-C-Buchse auf der Platine war so großzügig gefertigt, dass es beim Einstecken des Kabels keinen Kontakt gibt. Also muss man sorgfältig nacharbeiten und vorsichtig biegen, bis die winzige Leiterplatte im Innern der Buchse genau zentral sitzt UND der Metallmantel der Abschirmung für einen strammen Sitz des Steckers sorgt. Dabei darf man nicht vergessen zu testen, ob ein um 180 Grad verdrehter Stecker ebenso sicher Kontakt gibt. Na ja...

Zeigt sich damit wirklich Leben (und die Battery LED blinkt blau), dann schrauben wir mal den

LOAD-Widerstand auf den TX-Ausgang = (Channel 0).

Auf dem NanoVNA-Bildschirm sehen wir dann **drei** Kurven in verschiedenen Farben und ein Smith Chart.

Der zugehörige informative Text ist bei dieser Bildschirmgröße natürlich winzig klein und da muss Jeder sehen, wie er damit klar kommt (...ich arbeite z. B. schon lange, auch beim Löten, mit einer Stereo-Lupe).

23. Die erste erfolgreiche Messung: Eigenschaften der LOAD

Wir lassen den LOAD - Widerstand auf dem TX - Port und tippen mit dem Finger oder einem "Stimulus" auf den Bildschirm ("**Stimulus**" = offizieller Stift mit Gummikappe oder ein Bleistift mit aufgesetztem kleinen Radiergummi). Dadurch öffnet sich das Haupt-Bedienermenü am rechten Bildschirmrand und darin müssen wir weiter machen.

Ein Tipp auf das **oberste Feld**

"Display", gefolgt von "Trace" öffnet

den Zugang zu den vier dargestellten Kurven. Dort holen wir uns zuerst die violette Kurve mit einem weiteren Tipp und wählen "**OFF**". In gleicher Weise löschen wir auch die blaue Kurve (am unteren Bildrand).

Auf dem Bildschirm sollte jetzt nur noch der Verlauf von S11 im Smith Chart sowie im kartesischen Diagramm von 50 kHz bis 900 MHz zu sehen sein.

Drücken wir nun den

Multifunktionsschalter MFS nach rechts und halten ihn dort fest, dann wandert der Marker vom Start bei 50 kHz zu höheren Frequenzen. Da versuchen wir mal, **f** = 468 MHz zu erwischen und lesen dann ab (...genau sind es 468,042 MHz). Auf der Skala am linken Diagramm-Rand finden wir eine 10 dB – Teilung sowie oben den "Null dB – Punkt".

Da sehen wir (sowohl an der Anzeige wie auch am kartesischen Kurvenverlauf, dass die Anzeige für S11 ("LOGMAG") um die

-47 dB herum schwankt. Es wird aber nur das Ergebnis für die allererste Messung angezeigt.

Im **Smith Chart** erhalten wir bei solch kleiner Reflektion nur eine Markierung im Mittelpunkt des Charts (= also bei 50 Ohm). Dafür gibt es ganz oben und ganz rechts im Eck die Angabe der zugehörigen Reihenschaltung für die Eingangsimpedanz bei 468 MHz:

49,5 Ω in Reihe mit 1,7....4 Nanofarad

Na ja....kein Wunder, dass wir eine so große Streuung erhalten. Bei solch kleinen Spannungspegeln und dem gut zu sehenden Rauschen....

Da dieses Rauschen mit der Frequenz ansteigt, ist es besser, den **mittleren S11 - Kurvenverlauf** im kartesischen Diagramm einfach abzuschätzen.

Aufgabe:

Verschieben Sie den Marker (durch Druck auf die Wippfunktion des Multi Function Switches MFS nach links) bis zu 144 MHz und ermitteln Sie dort die S11-Werte.

24. Die Sweep-Möglichkeiten

Im Hauptmenü finden wir "Stimulus" und wenn wir das öffnen, gibt es folgende Optionen:

a) Mit "Start" und "Stop" sweepen wir über diesen Bereich

b) Mit "**Center" und "Span**" wählen wir eine bestimmte Mittenfrequenz sowie einen symmetrischen Sweep (= Span) um diese Mittenfrequenz herum

c) Mit "**CW Freq**" arbeiten wir bei einer wählbaren Festfrequenz.

Als Abschluss findet sich dort noch Umschaltung zwischen "Pause" und "Sweep".

24.1. Einstellung von anderen Start / Stopp – Werten beim Sweep

Wir wollen mal nur den Bereich von **460....470 MHz** sehen. Es wird automatisch immer mit 101 Frequenzpunkten gearbeitet.

Schritt 1:

Öffnen des Menüs "Stimulus"

Schritt 2:

Tippen auf "**Start**", gefolgt von einem Tipp auf den **rechten Rand des Feldes mit der angezeigten Frequenz** (= rechtes unteres Eck des Bildschirms). Dadurch öffnet sich eine kleine Tastatur, über die wir die neue Startfrequenz als "460.0M" eingeben.

Schritt 3:

Nun dasselbe nochmals, aber jetzt eine Eingabe von "**470.0M**" für die Stopp-Frequenz. Fertig!

23.2. Center / Span - Betrieb bei 465 MHz

Schritt 1: "Stimulus" öffnen

Schritt 2: Ein Tipp auf "Center"

Schritt 3: Frequenz "465.0M" eintippen

Schritt 4: Ein Tipp auf "Span"

Schritt 5: "5M" eingeben

Schritt 6: Bitte prüfen, ob bei 462,5 MHz gestartet und bei 467,5 MHz gestoppt wird

24.3. CW – Betrieb bei 465 MHz

- a) Das **Stimulus**-Menu aufrufen
- b) "CW Freq" wählen
- c) Auf den rechten Rand des Feldes mit der Frequenzanzeige (am unteren Bildrand) tippen und die gewünschte CW - Frequenz mit 465 MHz eingeben
- d) Ergebnis auf dem Bildschirm prüfen

25. Die Kalibrierung Wichtig:

Alles, was wir bisher geübt haben, würde ohne vorherige Kalibrierung kein genaues Ergebnis liefern oder sogar sinnlos sein.

Deshalb muss man auch, wenn man den untersuchten Frequenzbereich ändert, SOFORT neu kalibieren!

Also gehen wir nun an diese Kalibrierung und da gilt:

a) Wir können maximal fünf verschiedene Kalibrierungen (C0 bis C4) speichern.

b) Die gerade aktive Kalibrierung wird in der Mitte des linken Bildrandes angezeigt.

Be aus Na Voi 10 Au

Beim Einschalten werden **immer automatisch** die Daten aus **C0** verwendet!

Nach dem Gerätekauf **findet sich in C0 eine Werks-Kalibrierung von 50 kHz bis 900 MHz.** Allerdings nur mit den maximal möglichen 101 Frequenzpunkten – also sehr grob (Schrittweite etwa 9 MHz). Außerdem wurde sie **nicht** mit dem **mitgelieferten** "SOLT"-Satz vorgenommen und passt deshalb nicht perfekt (SOLT = Short /

Open / Load / Through).

Die erste Maßnahme muss deshalb eine Grundkalibrierung des NanoVNA sein.

Möchte man dagegen in einem engeren Frequenzbereich messen (Beispiel: Antenne oder Bandpassfilter), dann muss man dafür **extra kalibrieren** und das Ergebnis in einem der folgenden Speicherplätze **C1....C4** ablegen . Daraus kann es beim nächsten Mal aufgerufen werden und der zugehörige Frequenzbereich wird gleich automatisch mit eingestellt. **Das soll die zweite Aktion sein und dazu nehmen wir uns ein praktisches Beispiel vor.**

Doch sehen wir uns noch die Informationen am linken Bildrand etwas genauer an, denn darauf sollte man vor einer wichtigen Messung kurz einen Blick werfen (..um sicher zu sein, dass alles aktiviert ist). Beim Einschalten des NanoVNA steht dort die Nummer des **aktivierten Speicherplatzes C0**, gefolgt von den vorher durch eine Kalibrierung ermittelten "Error Terms" und das sollte stets der Anblick (von oben nach unten) sein:

- **C0** (= default calibration data)
- **D** (= Directivity)
- **R** (= Reflection Tracking)
- **S** (= Source Match)
- **T** (= Transmission Tracking)
- X (= Isolation)

(Hinweis: Das Thema ist in gut verständlicher Form in der Application Note

NanoVNA RF Calibration Considerations and Procedure

aus dem Internet enthalten. Da lohnt sich der Download!)

26. Die Sache mit den Mess - Kabeln

Man sollte, um die SMA - Buchsen am NanoVNA vor Beschädigung zu schützen, **immer** mit einer dieser beiden folgenden Möglichkeiten arbeiten (...Buchsenwechsel auf der Platine ist im Schadensfall eine sehr heikle Mission....):

a) Man schraubt auf jede Buchse einen **SMA – Male - Female - Adapter** mit dem vorgeschriebenen Drehmoment auf (...Drehmoment - Schlüssel gibt es im Internet...). So kommt das Messkabel oder das Messobjekt nur mit diesem Adapter in Kontakt und der wäre, falls es nötig ist, leicht zu wechseln.

b) Wie schon erwähnt, können die im **Kit enthaltenen beiden SMA-Kabel** Ärger machen. Nicht nur ihr Wellenwiderstand stimmt nicht ganz (mit Time Domain Reflektor gemessen: **ca. 54 statt 50** Ω), sondern es fiel bei mir einfach an einem Ende der SMA - Stecker ab, da die Crimpung des Steckers am Kabel schludrig ausgeführt war. Daher ergab die Kalibrierung oft sinnlose Werte, und bis man das findet....

Die rigorose Abhilfe bestand aus der Beschaffung und Verwendung von **zwei sehr** hochwertigen Kabeln (= Huber - Suhner mit blauschwarzem Mantel), die bis 18 GHz spezifiziert sind. Auch sie verbleiben dauernd am NanoVNA.

Zur Beschaffung: auf und unter allen Tischen beim HAM - Radio-Flohmarkt genau schauen. Irgendwo liegen sie herum..

27. SOLT - Kalibrierung (50 kHz bis 900 MHz) für Platz C0

1) NanoVNA starten und die SMA – Kabel auf die beiden RF - Ports (CH0 und CH1) dauerhaft aufschrauben.

2) Hauptmenü starten (= einmal über den Schirm wischen) und "**DISPLAY**", gefolgt von "**TRACE**", wählen.

Darin brauchen wir die gelbe Kurve "**TRACE 0**" und anschließend "**SINGLE**". Nach erneutem Wischen geht es wieder zu "**BACK**". Dann tippen wir auf "**FORMAT**" und hinterher auf "**LOGMAG**.

3) Jetzt dasselbe Spiel für **Trace 1**:

BACK / DISPLAY / TRACE / TRACE 1 (ggf. noch über FORMAT auf LOGMAG einstellen)

So sollte den Bildschirm nun aussehen.

CH 0 = gelbe Kurve = S11

CH 1 = blaue Kurve = S21

4) Es geht weiter mit der Start – Stopp-Einstellung und da brauchen wir 50 kHz....900 MHz

5) Jetzt beginnt die Kalibrierung und zwar mit einem **Reset**, der alle alten Kalibrierungen löscht:

Im Hauptmenü (...das mit "DISPLAY" beginnt), suchen wir nach **CAL**. Darin drücken wir auf **RESET**.

6) Im CAL-Menü findet sich auch CALIBRATE.

Damit öffnet sich eine Liste, die mit **OPEN** los geht und nun schrauben wir die im Kit enthaltene **SMA** -**Kupplung (Female / Female Through) samt dem SMA - OPEN-Stecker** auf das Ende des Kabels von Channel CH0.

Ein Klick auf **OPEN** löst die Kalibrierung aus und schon kann es mit dem **SHORT** weitergehen. Also das "Open"-Teil ab- und den "Short" auf die Kupplung aufschrauben. Bitte dann wieder auf das grün markierte Feld "**Short**" klicken.

Der **Short** wird entfernt und durch die **LOAD** ersetzt. Erneut wird durch einen Tipp auf "**LOAD**" kalibriert.

Achtung: nun empfiehlt die Anleitung, möglichst beide Eingänge CH0 und CH1 bzw. die zugehörigen Kabelenden mit 50 Ω abzuschließen.

Also brauchen wir für Channel CH1 noch einen weiteren Female – Female – SMA -Adapter sowie einen weiteren Abschlusswiderstand. Nur so holt man auch das letzte Quäntchen Genauigkeit heraus-

Es folgt die Kalibrierung der **ISOLATION** beider Kanäle. Dazu bleiben CH0 und CH1 unverändert mit 50 Ω abgeschlossen.

Die letzte Aktion ist **THROUGH**. Dazu werden die Abschlusswiderstände entfernt und beide Kabelenden über den **Female – Female – Adapter verbunden**. Ein Klick schließt die Kalibrierungsprozedur ab.

Also dürfen wir nun endlich auf **"DONE"** drücken und müssen nun nur noch das Ergebnis mit **"SAVE 0" im Speicherplatz C0 ablegen**. Jetzt können wir mit der Messung beginnen.

(Wer nun ganz sicher sein will, der sehe am linken Bildrand nach, ob da untereinander C0 / D / R / S / T / X

steht. Dann ist alles OK).

Und zum Abschluss ein praktischer Tipp zur Aufbewahrung der SOLT -T eilchen:

Das leere Pillendöslein stammt als kleines Geschenk aus meiner Apotheke. Und in die drei entscheidenden Bauteile des Inhaltes habe ich die Buchstaben "S", "O" und "L" mit der Reissnadel eingeritzt…

28. Beispiel: nochmals der Tschebyschef - Tiefpass mit fg = 110 MHz und N = 5

Da wir gerade von 50 kHz bis 900 MHz kalibriert haben, ist dies das richtige Messobjekt. Hier haben wir den Testaufbau, bereits auf einer Leiterplatte und mit aufgeschraubten Kupferblechwinkeln, Die tragen jeweils eine SMA - Buchse und so liegt deren Innenleiter reflexionsarm auf der zentralen Microstrip -Leitung auf.

Sofort nach dem Anschluss der Messkabel an die Platine erscheint dieses Bild.

Da machen wir doch gleich Nägel mit Köpfen und sehen uns das nur **für 1 MHz bis 200 MHz** an.

Das geht natürlich mit der SOLT - Kalibrierung in diesem Bereich los:

1. Schritt:

Sweep - Bereich von 1 MHz bis 200 MHz einstellen

2. Schritt:

Prüfen, ob Ch0 und CH1 auf "**LOGMAG**" - Darstellung stehen. Trace 3 mit Smith Chart ggf. abschalten

3. Schritt:

Hauptmenü aufrufen und dann CAL / CALIBRATE wählen

4. Schritt:

Die komplette SOLT-Kalibrierung durchführen und das Ergebnis z. B. unter **SAVE 4** in C4 ablegen

5. Schritt:

Messen und das Ergebnis bewundern.

Hinweis:

Der Frequenzmarker lässt sich mit dem Multifunktionsswitch MFS und seiner "Wippenfunktion" nach links bzw. rechts verschieben.

Alle Daten werden am oberen Bildrand eingeblendet.

29. Eine Bilanz (= Gut / Schlecht / Änderungen...)

Das ist Spitze:

Kleines, handliches Gerät mit ausreichender Messgenauigkeit für die Praxis und gut zu bedienen. Kein kompliziertes, teures Profi-Laborgerät mit hochgezüchteter Genauigkeit.

Günstiger Preis.

Mit **Akku** sehr praktisch für Messungen direkt an Außenantennen (= 4 Stunden Laufzeit). Erst recht mit **Powerpack** (= etliche Tage Laufzeit).

Spart auf dem Arbeitstisch bis zu drei ältere 19 Zoll Geräte ein.

Hohe Frequenzstabilität (0,5 ppm). Absolute Frequenzgenauigkeit ca. 2,5 ppm

Mit der **USB-Verbindung und der kostenlosen Software** aus dem Internet können wir vom PC aus sehr komfortabel das Gerät steuern und die Ergebnisse in aufwendigen Diagrammen darstellen. Benimmt sich dann wie eine große Maschine.

Dann kommt "Na Ja...."

Sehr kleiner Bildschirm mit noch kleinerer Schriftgröße. Touchscreen-Bedienung nicht mit dem Finger, sondern besser mit einem Stimulus - Pencil vornehmen. Möglichst schnell auf den Betrieb mit dem PC und dem Programm "NanoVNA - saver Version 0.2.0." umsteigen.

Beim **Stand - alone - Betrieb** gibt es **nur 101 Messpunkte**: das schmerzt und verlangt bei Filtern genaue Überlegungen für den zu wählenden Sweep - Bereich. (Ist beim PC-Betrieb kein Kritikpunkt mehr)

Micro – USB – C - Steckverbindung auf dem Board wirkte zunächst etwas wackelig. Brauchte erst mal Kontrolle und etwas Nacharbeit bei der Buchse, dann klappt es stabil.

Mitgelieferte SMA - Kabel mit großer Toleranz und schlecht gecrimpt – ein Stecker fiel gleich ab. Habe ich deshalb durch **hochwertige Teflon - Kabel** bzw. bei Bedarf durch **Semirigid - Kabel** ersetzt.

Anspruchsvolle Menüführung des NanoVNA - Boards im Vergleich zur PC-Bedienung. Es ist oft leichter, mit **BACK** bis zum Hauptmenü (...beginnt mit **DISPLAY**..) zurück zu kehren und von dort aus die gewünschte Option zu suchen.

Der **Multi-Funktionsschalter MFS** ist ein etwas klappriges Gebilde und verlangt einen sehr behutsamen Zugriff.

SOLT - Kalibrierdaten werden beim Kauf nicht mitgeliefert. Sie stehen jetzt aber für den PC-Betrieb mit der NanoVNA – saver - Software (dank Kurt Poulsen) in Teil 2 des Tutorials zur Verfügung